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1. STAT PROGRAM DESCRIPTION

The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to

perform numerical optimizations on highly swept counter- rotating propfan stages. The optimization

procedure seeks to minimize an objective function, defined as either direct operating cost or
aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry

variables that must satisfy realistic blade design constraints.

The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and

vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (one-p) forced

response life prediction capability. The STAT constraints include blade stresses, blade resonances,

flutter, tip displacements and a one-p forced response life fraction. The STAT variables include all
blade internal and external geometry parameters needed to define a composite material blade. The

STAT objective function is dependent upon a blade baseline definition which the user supplies to
describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.

To perform a blade optimization, three component analysis categories are required: an
optimization algorithm; approximate analysis procedures for objective function and constraint
evaluation; and refined analysis procedures for optimum design validation. The STAT computer

program contains an executive control module, an optimizer, and all necessary component analyses.

The optimization algorithm of STAT is the Automated Design Synthesis (ADS) optimization package,
which is a proven tool for optimizations with a small to medium (1 to 30) number of design variables.

A flowchart of the STAT procedure is shown in Figure 1.

The structural analysis of STAT utilizes an efficient, coarse mesh, plate finite element blade

vibration analysis procedure. The finite element analysis provides blade natural frequencies and
mode shapes, stress under centrifugal and pressure loads, and blade weight. Additional constraint

evaluations, including flutter, power, acoustic and one-p calculations, utilize outputs from the finite

element analysis.

To use the blade optimization system, curves used to describe the external and internal geometry

of each turboprop rotor are defined. External geometry curves define blade thickness, section

stacking, camber, chord, twist and conical sections. Internal geometry curves define individual layer
thickness, percent chord coverage and position over the blade planform.

The STAT system has been applied to both single rotation propfans (SRP) and counter rotation

propfans (CRP). SRP applications include the Large-Scale Advanced Prop-fan (LAP) SR-7
blade, the LAP SR-7 aeroelastie scale model blade and the 18E SR-7 infeasible blade design. CRP

applications include development of the first analytically feasible full-scale rotor, CRPX1, and the

development of an aerodynamic scale model of this new rotor system. The STAT program made

significant improvements in all cases and demonstrated the great potential for design enhancements
through the application of numerical optimization to turboprop fan blades of composite construction.

__..J
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Figure 1. Structural Tailoring of Advanced Turboprops Overall Program Flow
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2. OPTIMIZATION PROCEDURES

To perform a successful blade optimization requires intelligent updating of many design
parameters, and many applications of detailed analysis procedures. To meet this challenge, STAT has

been assembled using the most efficient analysis procedures obtainable (Section 3), as well as the most
efficient optimization algorithms.

Conventional optimization procedures work well with a small to medium number of design

variables (Reference 1). Approximation techniques, such as quadratic regressions, work well with up

to six or eight design variables. Beyond this number of design parameters, direct methods, such as the
method of feasible directions, are preferred. Direct methods work acceptably with up to 40 or 50

design variables.

For a complicated optimization like the design of counter-rotating propfans, hundreds of

design parameters are available. To ensure that STAT employed a reasonable number of design
variables so that conventional optimization procedures would be applicable, the concept of design

curves was developed.

The design curve concept recognizes that most propfan airfoil parameters, such as airfoil chord
and thickness, are normally defined as functions of the radius. Thus, while each section may have a

unique thickness, many of these parameters may be linked together via a single "curve." Within STAT,

each design curve may be continuously updated via the selection of design variables at selected radial
locations. As a single parameter value is updated, the curves are resplined, thus effecting the value

of the parameter at many radial stations. In this fashion, STAT gives the user a great degree of design
flexibility, while minimizing the number of design variables required in an optimization.

The optimization algorithm of STAT is the ADS (Reference 2) optimization package. ADS
offers a wide variety of optimization procedures and is a well accepted and proven optimization tool

for optimizations with a small to medium (1 to 30) number of design variables.

In most optimizations, the efficiency and reliability of the numerical optimization process may

be enhanced by scaling of the design variables. Indeed, the ADS optimizer has such a capability built
into its procedure. Unfortunately, due to the way that STAT's design curves are defined, the ADS
scaling procedure is rendered ineffective. To counter this problem, a design scaling algorithm has been

included within the STAT program.

2.1 STAT Design Curves

The complete structural definition of a stage requires the effective processing of many design

parameters. For the blade definition, blade descriptive information is input through design curves,
in which blade geometric parameters are tabulated as functions of an abscissa, in this case the section

percent span. These tabulated values are stored as splines, so that a design data base is available, with

section information available at any number of stations.

The airfoil external geometry is defined through thickness/chord, chord/diameter, stacking x,y,z

points/radius, section cone angles, twist angles and a nondimensional camber/lift coefficient

parameter. The airfoil composite internal construction is defined through wall thickness, percent
chord coverage, and percent chord meanline curves.

M.../



To provide design freedom and generality,STATsupportsall of theseblade geometry
parametersasdesignvariables.Byallowingtheanalysttoselectthenumberof designvariableshe/she
wantsto usein theradialdirectionfor anyparticulardesigncurve,STATpermitstheanalystto tailor
the flexibility of thedesignoptimization,whilemaintainingeffectiverun times. Presentexperience
hasshowndesigntailoringsuccesswithover40designvariablesused.

V

Design Data Curves

In STAT, except for a few discrete quantities such as the attachment geometry, aerodynamic

environment and material properties, all design data are stored in tabular form as splines of the design

curves. The design curves are defined in the program as data values with a corresponding abscissa,
usually but not necessarily the section radius. The structural and fabrication data necessary to

describe the blade internal and external geometry are stored in these design tables. Using quintic

spline algorithms, design curve reference is available, so that any curve may be referenced at any
arbitrary required radial location.

As the design optimization process commences, it is necessary for STAT to update the design

curves to reflect the present analysis geometry. Thus, two sets of design ctT__es aremaintained" an
original set of_es,-and a currerit S/'.t_ The baseline design _urves are updated_adesi_ curve
increments. A detailed definition of the curve increments is determined via a Spline fit of available

design variables. Thus, any _rve may be updated byha_ng one or more design variables assigned

to it. The variable curve is splined, then added to_e baseline curve, thus creating the current design

curve, from which the analysis geometry is derived, as shown in Figure 2.

By using the curve incrementing procedure, several advantages are obtained. First, it is always
possible to reproduce a baseline design. If the design variables are the curve values themselves, rather

than increments, it is difficult to regenerate an accurate baseline geometry without an inordinate
number of design variables. By splining increments of baseline curves, a design variable set of zeroes

always exactly reproduces the original design. Secondly, the process allows for reducing the optimizer
design variable requirements by providing for dependent variables and for constant terms. A

dependent variable assignment allows for a curve to be incremented at several abscissa locations even

though it may have only one design variable attributed to it. Dependent variables are incremented
in user prescribed ratios to the actual design variables, and are unknown to the optimizing algorithm

itself. The provision of a constant term allows a curve location to be held to a constant value, including

a prescribed increment. This capability, therefore, provides the user the ability to perform a restart
optimization analysis.
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2.2 STAT Optimization Procedure

To provide for increased optimization flexibility and increased program modularity, the ADS
optimizer (Reference 2) has been included within the STAT system. ADS is a general purpose

numerical optimization program containing a wide variety of optimization algorithms. The solution
of the optimization problem has been divided into three basic levels by ADS: (1) Strategy, (2)

Optimizer, and (3) One-dimensional search. By allowing the users to select their own strategy,
optimizer, and one-dimensional search procedure, considerable flexibility is provided for finding an

optimization algorithm which works well for the specific design problem being solved.

Within STAT, the optimization algorithm is selected through the OPTIMIZE data card, which
allows for input of the ISTRAT, IOPT, ISERCH, and IOUT parameters. These parameters are used

to select the strategy, optimizer, one -dimensional search, and output algorithms as described below.

For the STAT application, 0 5 8 has proven to be the most reliable method for constrained

optimizations using equality and inequality constraints (the SR7, 18E, and CRPX test cases), while
0 3 3 has proven to be the best procedure for the unconstrained optimization of aeroelastic scale

models. The optimizer output selection used for all of STAT's applications has been 3552 to date.

Strategy

The optimization strategies available in STAT are listed in Table 1. The parameter ISTRAT is
sent to the ADS program to identify the strategy selected by the user. Selecting the ISTRAT= 0 option
transfers control directly to the optimizer. This is selected when choosing the Method of Feasible
Directions or the Modified Method of Feasible Directions for solving the constrained optimization

problem.

Table 1 Strategy Options

ISTRAT

0

1

2

3

4

5

6

7

8

9

Strategy to be Used

None. Go directly to the optimizer.

Sequential unconstrained minimization using the exterior penalty function
method.

Sequential unconstrained minimization using the linear extended interior
penalty function method.

Sequential unconstrained minimization using the quadratic extended interior

penalty function method.

Sequential unconstrained minimization using the cubic extended interior

penalty function method.

Augmented Lagrange Multiplier Method.

Sequential Linear Programming.

Method of Centers.

Sequential Quadratic Programming.

Sequential Convex Programming.

6
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Optimizer

The IOPT parameter selects the optimizer to be used by ADS. Table 2 lists the optimizers
available within STAT. Note that not all optimizers are available for all strategies. Allowable
combinations are shown on Table 4.

Table 2 Optimizer Options

IOeT

1

2

3

4

5

Optimizer to be Used

Fletcher-Reeves algorithm for unconstrained minimization.

Davidon-Fletcher-PoweU (DFP) variable metric method for unconstrained
minimization.

Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for
unconstrained minimization.

Method of Feasible Directions for constrained minimization.

Modified Method of Feasible Directions for constrained minimization.

One-Dimensional Search

Table 3 lists the one-dimensional search options available for unconstrained and constrained

optimization problems. The parameter ISERCH selects the search algorithm to be used.

Table 3 One-Dimensional Search Options

ISERCH

I

2

3

4

5

6

7

8

One-Dimensional Search Option

Find the minimum of an unconstrained function using the Golden Section method.

Find the minimum of an unconstrained function using the Golden Section method

followed by polynomial interpolation.

Find the minimum of an unconstrained function by first finding bounds and then using

polynomial interpolation.

Find the minimum of an unconstrained function by polynomial interpolation/

extrapolation without first finding bounds on the solution.

Find the minimum of a constrained function using the Golden section method.

Find the minimum of a constrained function using the Golden Section method followed

by polynomial interpolation.

Find the minimum of a constrained function by fist finding bounds and then using

polynomial interpolation.

Find the minimum of a constrained function by polynomial interpolation�extrapolation
without first finding bounds on the solution.

7



Allowable Combinations of Algorithms

Not all combinations of strategy, optimizer, and one-dimensional search are meaningful. For

example, it is not meaningful to use a constrained one-dimensional search when minimizing

unconstrained functions. Table 4 identifies those combinations of algorithms which are meaningful

in the STAT program. In this table, an X is used to denote an acceptable combination of strategy,
optimizer, and one-dimensional search, while an O indicates an unacceptable choice of algorithm.

To use the table, start by selecting a strategy. Read across to determine the admissible optimizers for
that strategy. Then, read down to determine the acceptable one-dimensional search procedures.

From the table, it is clear that a large number of possible combinations of algorithms are available.

Table 4 Program Options

Qt)timizer

1 2 4
0 X X X X X

1 X X X 0 0

2 X X X 0 0

3 X X X 0 0

4 X X X 0 0

5 X X X 0 0

6 0 0 0 X X

7 0 0 0 X X

8 0 0 0 X X

9 0 0 0 X X

One-Dimensional Search

1 X X X 0 0

2 X X X 0 0

3 X X X 0 0

4 X X X 0 0

5 0 0 0 X X

6 0 0 0 X X

7 0 0 0 X X

8 0 0 0 X X

V

V
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Optimizer Output Control

The ADS optimizer output is controlled in STAT by the IOUT parameter. This parameter is a

four-digit control, IOUT=IJKL where I, J, K, and L have the following definitions:

I: ADS system print control.

0 - No print.
1 - Print initial and final information.

2 - Same as 1 plus parameter values and storage needs.
3 - Same as 2 plus scaling information calculated by ADS.

J: Strategy print control.
0 - No print.

1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.

3 - Same as 2 plus G at each iteration.

4 - Same as 3 plus intermediate information.
5 - Same as 4 plus gradients of constraints.

K: Optimizer print control.

0 - No print.
1 - Print initial and final optimization information.

2 - Same as I plus OBJ and X at each iteration.
3 - Same as 2 plus constraints at each iteration.
4 - Same as 3 plus intermediate optim_tion and one-dimensional search

information.

5 - Same as 4 plus gradients of constraints.

L: One-dimensional search print control.

0 - No print.
1 - One-dimensional search debug information.
2 - More of the same.

Example: IOUT = 3120 corresponds to I=3, J=l, K=2, and L=0.

2.3 Design Variable Scaling

Vanderplaats (Reference 1) has shown that by effective scaling of design parameters, slow or
nonconverging optimizations can become quite solvable. This is accomplished by transforming the

design variable vector such that all components of the gradient are the same, and the order of

magnitude of the components of the diagonals of the Hessian matrix are the same.

To achieve this level of normalization in STAT is likely not possible. However, significant

improvements have been noted by normalizing each design variable (dividing by its initial value). This

scaling procedure has the effect of putting each variable on the same basis in the sense that a one
percent design variable change has roughly the same meaning for each variable. Indeed, this scaling

algorithm is built into the ADS optimizer.

in STAT, however, since each design variable represents an updated value from a baseline, the
initial value for many or most of the design variables is zero. As such, the built-in scaling of ADS



is rendereduseless(the program,to prevent division by zero, simply does not scale a variable whose

initial value is zero).

Design variable normalization such as discussed above has been implemented in STAT by
normalizing each design variable with respect to its full initial value, as determined from the baseline

curves, incremented by the initial design variable increment, if nonzero. This process has been

implemented within STAT, external to the ADS optimizer. This can be accomplished within STAT,

but not within ADS, since STAT has access to the original, baseline design curves, while ADS does not.

2.4 User-friendly Features

To simplify usage of the S'FAT program and reduce the chances for errors in creating

optimization cases, many user-friendly enhancements have been added to the STAT system. Input
cards (Reference 3) are identified by mnemonic titles, and free format inputs are utilized, thus

streamlining the data file creation process. Design definition parameters are input as sets of data on

CURVE cards, which reference an ABSCISSA card which provides section geometry location.
Independent design variables are identified on VARIABLE cards, which provide curve and abscissa

value reference for a design variation location. Design variable upper and lower change limits, and

initial values for the design variable are also provided. This capability for an initial nonzero value of
the design variable provides the program with a restart capability. Associated with the design

variables, and providing additional curve perturbation information, are the DEPENDent variables
and the CONSTANT terms, which allow curve values at specified locations to be kept constant or to

be varied in fixed proportion to variations at design variable locations. Note, CONSTANT cards allow
for a restart capability for curves that the user no longer wishes to be varied. This allows the user the

freedom to optimize a blade geometry for one particular set of variables and then start with that
optimum design and allow STAT to find a new optimum for a second set of variables and soon. These

added curve options provide increased program flexibility, and more detailed design curve

description, at no additional analysis cost.

V
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3. STAT ANALYSIS MODULES

To perform its propfan optimizations, STAT must be able to evaluate all performance, acoustic,

durability, and cost issues for any candidate design. To meet this need, STAT has been given a full set
of production quality propfan analysis modules, and is able to fully evaluate the performance

characteristics of any conventional or counter-rotating propfan design.

In performing a propfan optimization, as detailed in Section 2, iterative search procedures are
employed. Thus, many design iterations, with a corresponding high number of propfan analyses, will

be required. To achieve a candidate optimum design as quickly as possible, STAT uses production

quality analyses, but employs relatively coarse integration maps. As such, candidate designs may be

evaluated as quickly and cheaply as possible, while maintaining acceptable levels of analysis accuracy.
An optimal design can easily be analyzed in more detail simply by using a more detailed integration

network (computer memory permitting).

Should one of the STAT integration networks prove inadequate for optimization screening, two
methods of improving the analysis results are available. First, calibration factors are available in the

STAT input stream (see Reference 3) to allow analysis results improvement, at no increase in

computer expense. Second, a more detailed mesh may be employed to improve the accuracy of the
STAT analysis, though at increased computer cost. Usage of this second procedure may be limited

depending on the computer system being used, if sufficient extra memory is not available. For more

details on the STAT storage allocation procedure, see Reference 4.

Running Position Geometry Correction

Traditionally, aerodynamic design files define the geometry of the blade in its hot, or running,

position because the aerodynamic analysis calculations are strictly dependent upon the running

position of the blade. For highly swept fan blades, it is usually left to the structural analyst to define
the manufactured, or cold blade geometry such that at running conditions, including gas, centrifugal,

and thermal loads, the blade will deflect to the desired geometric position set forth by the

aerodynamics group. This is a nonlinear, iterative analysis process and can be quite time consuming.

Using the standard design process, then, the propfan structural considerations trail the
aerodynamic design considerations. Indeed, a desirable aerodynamic configuration may not be

manufacturable. STAT attempts to assimilate all analysis procedures on an equal, early stage in the
design process, to improve inter-disciplinary communications. Thus, STAT is really a concurrent

design analysis and optimization process.

Analysis concurrence has been built into STAT by requiring the airfoil design curves to define
the cold, as manufactured, airfoil, rather than the hot, running geometry, as is normally done. Within

STAT, a module has been added to update an airfoirs cold design by the structural (finite element)

deflections, to generate a hot, running position configuration for further aerodynamic and acoustic
analysis. There is, however, a bit of a catch to this. After all, how can the hot geometry be calculated

if air loads are not known? But, to get the air loads, don't we require a hot geometry?

11



STATsolvesthisapparentimpasse by recognizing that:

1. Air loads will change little between design iterations

2. STAT is by its nature an iterative process, so initial small errors in air loads will be corrected
as the optimum design evolves.

STAT initiates its blade optimization process by performing an aerodynamic analysis of the cold
airfoil geometry. Air loads from this analysis are then passed into the optimization loop, which

initiates with a finite element analysis, to determine the airfoil hot geometry. As the loop proceeds,
each geometryuses the air loads from the previous aerodynamic analysis. Thus, only the first analysis

pass uses cold geometry air loads. Each subsequent analysis pass uses hot, nearly correct air loads.

Since the STAT procedure makes smaller and smaller design changes as the optimization

proceeds, the differences between the gas loads from one loop to the next will converge to zero and,

therefore, the geometry update approximation will become exact. As a byproduct of this airfoil
geometry definition convention, when the optimization has been completed, both cold and hot blade

geometries are available.

The STAT analysis modules will now be discussed individually, in the order that they are
referenced within the optimization loop.

3.1 Airfoil Geometry Generation

For its airfoils, STAT uses standard airfoil definitions, including circular arc, NACA Series 16,

NACA Series 62-65, and NACA Series 230. These airfoil shapes, together with the thickness, chord,

camber, twist, and stacking design curves, are sufficient to define a unique solid geometry.

For its finite element analysis, STAT employs plate element technology. Thus, to generate the
geometry for the airfoil structural analysis, at the finite element mesh points, the coordinates of the

foil meanline, as well as the airfoil thickness at those points, will be required.

The airfoil type is selected by the user in the input file, on the GEOMGEN card. The geometry
of each radial cross-section is scaled depending on blade thickness and chord. The suction and

pressure surfaces of the blade are determined by splining several radial sections from the blade root

to tip. Using the surface definitions, the meanline coordinates and thicknesses are calculated for each
airfoil gridpoint location.

User alterations to the mesh density to be generated can be accomplished through the STAT

input cards, SPANTAB and CHORDTAB. These cards directly supply the program with the fractional
chord and fractional span locations of the airfoil mesh gridpoints.

3.2 Finite Element Mesh Generation

STAT's propfan finite element model consists of: (1) the airfoil geometry generated by the

geometry generator, (2) effective laminated composite material properties for each airfoil element,

and (3) the propfan attachment and hub section.

3.2.1 Plate Airfoil Geometry

Using the array of nodal point locations and thicknesses generated by the geometry generator,

creation of a triangular plate mesh of the propfan airfoil is a simple matter. Two options are available:
V
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generate N_ compatible GRID, C"TRIA, and PSHELL cards, or, to decrease both computer
time and I/O, direct load the geometry into arrays compatible with later geometry processing.

Usually, the latter is preferred, but the former is useful for external finite dement analysis
verification.

3.2.2 Equivalent Properties Generation

Equivalent properties for composite materials are generated in the mesh preprocessor, by

applying lamination theory to the composite blade construction while maintaining the blade
aerodynamic profile. The layup is treated as symmetric so that no coupling exists between the bending

and membrane stiffnesses. Application of lamination theory (Reference 5) to the composite element

yields effective stiffness arrays for membrane and for bending motions. These matrices are

compatible with NASTRAN material descriptions for the plate elements employed.

When processing material properties of a composite blade for optimization, care is required to
ensure meaningful design variable gradients. Due to the high degree of flexibility allowed to the

optimizer to move composite plies and hollow cavities, it is not practical to align element edges with
ply boundaries. Even if this was accomplished for the initial design, subsequent design perturbations

could result in poorly shaped finite elements, which would degrade the accuracy of the approximate
finite element analysis.

Within STAT, the element locations and breakup are held constant, and the plies are allowed to

shift relative to the element mesh. If an element is fully penetrated by a ply, it is treated as a

component of the element in the lamination equivalent property generation. If an element is only
partially penetrated by a component ply, the ply thickness is scaled by the area penetration ratio, and

a full (but adjusted thickness) penetration is assumed. This algorithm prevents on/off property

discontinuities from occurring, and ensures continuous derivatives for the design sensitivity
calculations. Note that this algorithm calculates the effective properties for a rectangular "element."

Since STAT actually uses triangular finite elements, the properties for one of these rectangular maps

is applied to a pair of triangular elements.

Mapping of composite plies onto the finite element mesh is accomplished within STAT through

application of design curves to ply shape definition. Composite ply thickness, ehordwise extent, and
meanline location are defined via design curves. Ply radial extents are defined via cutoff parameters.

Each of these ply definition quantities may be treated as a design variable, thus providing much

freedom to the composite construction definition. The order of ply layup is defined via the LAYUP
card. A PRIORITY card defines which plies will remain in thin sections of the blade, and which plies
will be removed. Material directional moduli and Poisson ratios, input on the MATERIAL card, are

used to generate equivalent laminar stiffness properties.

The composite ply angle, defined on the MATERIAL card, is used to orient directional
composite properties. A plywith zero material angle would be oriented such that its primary axis (1-1

direction) lined up with the projection of the engine radial axis onto the plane of the finite element.
Near the tip of these highly swept blades, for the relatively coarse triangular meshes employed for the

STAT optimizations, high sensitivity to the calculation of the angle between the element X axis and
the projection of the radial axis has been noted. In particular, near the blade tip, the sides (element

x-axes) of the quadrilateral elements used to map the composite material properties may not be

parallel. To account for this effect, which has a significant effect on airfoil frequency, the element
composite ply angle is calculated for each element individually.

13



3.2.3 Attachment Model

The STAT attachment model can either be defined using NASTRAN bulk data type input cards

or directly by defining attachment length and diameter. For highly swept, propfan blades of

spar-shell composite structure, the attachment is an extension of the spar and may usually be
approximated as cylindrical and therefore, defining the length and diameter is adequate.

The attachment length and diameter may be used as variables. The blade attachment flexibility

greatly influences blade resonances; therefore, for frequency tuning, the length and diameter

parameters are pertinent variables.

3.3 Finite Element Analysis

The STAT finite element analysis uses NASTRAN's finite element plate technology so as to
accurately represent the blade geometry for a large deflection, geometric nonlinear analysis. The

plate element more accurately models blade effects such as uncamber and chordwise deflections when
compared with beam models. It has been demonstrated with linear finite element analyses that

relatively coarse plate meshes yield improved approximate analysis results at run times competitive

with beam analysis procedures. Because the STAT approximate analyses must be self-contained,
NASTRAN was not a viable approximate analysis option. Hence, a self-contained finite element

analysis using NASTRAN plate element technology was constructed.

To enable the application of plate finite element technology to STAT approximate analysis, an
efficient plate finite element procedure was created. The procedure uses NASTRAN technology, but

because of its reduced scale, all matrices are stored in the core of the computer, and all procedures

take place in core as well. Thus, for the small problems of the STAT approximate analyses, the special
finite element computer code is able to deliver NASTRAN accuracy, but at greatly reduced computer

expense.

3.3.1 The STAT Plate Element

The similarity with N_ was preserved through the usage of a plate bending triangle very
similar to the NASTRAN TRIA3 element. The TRIA3 element is a reduced integration triangular

plate bending element of the QUAD4 family (Reference 6).

Features of the element include:

1. Recognition of thickness taper

2. Properly stacked triangular plate element meshes to simulate airfoil pretwist and camber

3. Composite material capabilities (using lamination theory)

4. Element differential stiffness

5. Lumped masses are employed, assuring a diagonal stiffness matrix, for storage efficiency.

V
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3.3.2 Guyan Reduction

The Guyan reduction procedure (Reference 7) has proven to be a very successful means of
reducing the number of degrees of freedom used in dynamic analysis, while minimizing loss of

accuracy in the lower frequency modes. The procedure is based on the fact that many fewer grid points
are needed to describe the inertia of a structure than are required to describe its stiffness with

comparable accuracy. The reduction procedure thus allows a condensation, resulting in a much

smaller equation set for dynamic analysis.

The reduced, or omitted, degrees of freedom, Uo, and the remaining, or analysis degrees of

freedom, Ua, relate to static loads according to:

KooJ[UoJ
(1)

Neglecting the forces Fo, we find;

{Uo} = [(7oa]{Ua} (2)

where

[Goa] - - [Koo] -1 [Koa] (3)

The matrix decomposition required tocalculate Goa in Equation (3) was accomplished by using
the LEQ1PB subroutine of the International Mathematics and Statistics Library (IMSL).

The reduced stiffness matrix thus becomes:

[Kaa] = [Kaa] + [Kao] [(7oa] (4)

The reduced mass matrix, determined by equating the kinetic energies before and after the
reduction, is:

[Maa] = [Maa] + [Mao] [Goa] + [Goa] r ([Moa] + [Moo] [Goa D (5)

3.3.3 Differential Stiffness

The determination of natural frequencies for rotating blades requires the inclusion of

differential stiffness effects due to centrifugally induced steady stresses. In order to allow for

differential stiffness generation, static deflections are determined for the case of centrifugal loadings,
using the LEQT1P solver of the IMSL package. The static displacements are then used to create the
element differential stiffness matrix, KDGG. The energy of differential stiffness, Ud, consists in part

of energy of bending motions, Udb, and in part of membrane (in-plane) motions, Udm:

Ud -" Udb + Udm (6)

As shown in Reference 8, the bending and membrane energies are related to the membrane

stresses and the bending rotations, giving an energy per unit area of:
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1_ +_.)+ _,o_- 2,o._,)+2_.(_,-_)_}
where h is the element thickness; _x, %, and _ are the element membrane stresses; and _ %,, and

are the rotations in the element coordinate system, shown on Figure 3.

w

Z

Figure 3. Stresses and Rotations of Prestress Stiffened Plate Element

The centrifugal mass matrix, which accounts for the change in direction of centrifugal loads with

displacement, gives the nodal incremental load in global coordinates (x = radial, z = axial), as:

0Fy = Ms,2 2 0

0 M£2 z
(8)

This "stiffness," transformed into local nodal coordinates, is combined with the differential

stiffness matrix and the original blade stiffness, to give the blade's total at-speed stiffness. The total
blade stiffness matrix, after reduction to analysis-set size, is solved to find the at-speed blade natural

frequencies.

3.3.4 Eigenvalue Solution

Once the stiffness and mass matrices have been reduced, they are, in general, symmetric but full.
Due to the reduction procedure, however, they are relatively small in size. The unsymmetrie

eigenvalue problem is formed:

-o92{Ua} + [Maa] -1 [Kaa] {Ua} = {0} (9)

The IMSL subroutine package is again employed, using the QR method to solve the

unsymmetric eigenvalue problem. Both eigenvalues and eigenvectors are extracted for the reduced

size problem. IMSL routines required to perform the eigenvalue extraction include: EBALE
EI-IESSF, EHBCKF, EQRH3F, AND EBBCKF.

V
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3.3.5 In-Plane Rotation Singularity Constraint

When performing plate finite element analysis, the in-plane rotations must be suppressed in
relatively fiat sections to prevent system ill-conditioning. On airfoils, camber is usually sufficient

near the blade root to prevent in-plane rotation singularities. Near the blade tip, however, camber
is low and suppressions are usually required. In large deflection analyses, the problem is further

compounded by the possibility that the blade section may uncamber during the deflection process,
thus introducing further singularities.

To prevent against possible numerical problems during the STAT analyses, an algorithm to
provide an artificial stiffness to in-plane rotation singularities has been included in the STAT finite

element code. The algorithm, taken from Reference 9, creates a fictitious set of rotation stiffness
coefficients that is used in all elements, whether co-planar or not. For the triangular plate element,

the stiffness is defined by a matrix such that in element local coordinates, equilibrium is not disturbed,
namely:

[1 1:q 1t= aEtA 5 1. z2
lMz3J -15 -.5 3

(10)

where the coefficient was found through numerical tests to provide numerical stability with negligible
artificial system constraint for a value of a= 1.x10-6.

-.._1-

3.3.6 Geometric Nonlinear Analysis

The geometric nonlinear finite element analysis in STAT permits analysis of structures which

undergo large deflections and rotations. Material linearity is maintained by requiring that the strains
in any finite element remain small. In a linear static analysis, all coordinate systems are assumed to

be stationarywith respect to an inertial frame. The nonlinear static analysis permits the local element
coordinate system to translate and rotate relative to the reference frame. Whereas this coordinate
system motion maybe large, the relative element deflections must remain small. The relative element

deflections are obtained through coordinate transformations. It is these transformations which

introduce the geometric nonlinear relations.

The Geometric Nonlinear Analysis:

The linear static analysis, a two step process, precedes the nonlinear solution. Step one of the

linear static analysis includes assembling the structure stiffness, K, and external loads, E Deflections,
U1, are obtained through the product of the stiffness matrix inverse and the external load vector.

(Ul) = [gl-' (P) (11)

Step two utilizes these deflections to produce a linear correction on the initial stiffness to account
for the effect of load, deflection interaction. This correction is called the differential stiffness, Kd, and

is used to modify the original stiffness, K. The second solution is obtained;

= [K+ (p) (12)
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Thenonlinear solution process is simply an extension of the linear static procedure, and in fact

builds on the linear static solution, U2. In simplest terms, the nonlinear solution involves an iterative

process which converges when the external and internal loads are in equilibrium. The iteration
process uses the previous solution vector to form an incremental element stiffness matrix and internal
force vector. The incremental stiffness is combined with the initial stiffness similar to the differential

stiffness procedure. Internal forces are then calculated from the product of the modified stiffness and
the deflections. New external loads may be regenerated based upon the deflected shape. The
difference of the external and internal load vectors multplied by the inverse of the modified stiffness

produces an incremental deflection vector. The incremental deflection vector magnitude approaches
zero as the force equilibrium is achieved. The nonlinear iteration process is discussed in greater detail
below.

The nonlinear iteration process begins with the formation of three transformation matrices:

Feb] - basic system to undeformed element system,

[Tdb] - basic system to deformed element system,

[Tbg] - basic system to local grid ( or global ) system.

The basic system refers to the stationary reference coordinate system. These matrices are used

to transform the global (nodal referenced) deflections, Ug, to the deformed element system

producing the relative deflections, Ud, at node i;

where: X -
Re-
Rd-

(Vd,)= [Tdb] ( (Xi)+ [n,g,] (ug,) - (Rd) ) - [Teb] • ( (X_)- (Re))

undeformed coordinate

undeformed position vector
deformed position vector.

(13)

Relative rotations require a different procedure because finite rotations do not add vectorially.
Instead, the rotations are performed sequentially, first about global z, then about the reoriented y, and

finally about the twice reoriented x. The resulting rotation operations when combined form the

rotation matrix, R(Og);

rCzCy CzSxSy - SzCx CxCzSy + SxSy"

R(Og,)= |CySz SxSySz + CxCz CxSySz - CzSx
[- sy crs 

where;C'x = cos(Rx) ; Sx = sin(Rx)

Cy= cos(Ry) ; Sy = sin(Ry)
Cz = eos(Rz) ; Sz = sin(Rz)

i = loop thru all nodes on element

(14)

and Rx, Ry,Rz are global rotation components at node i.

This matrix is then transformed to produce the relative element rotations, R(0d), at node i;

R(Od)i = [Tbd] r [Tbgi] [R(0g)i] [Tbgi] T [:Feb] (15)
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Becauserotationswithin theelementaresmallR(0d) may be written;

-0y
R(Od)i = 1

- ax
(16)

where 0x, 0y and 0z are the relative element rotations at node i.

The element incremental stiffness, Kde, is determined knowing the relative deflections and

rotations, and then added to the original element stiffness, Ke. Local element internal forces, Fi,
follow:

(Fi) ffi[re + rae] (Vd) (17)

The updated element stiffness and the internal force vector are assembled to the global level.
The assembled internal vector is subtracted from the external load vector, P, forming the incremental

load vector, L. Incremental deflections are directly solved;

(U)j = [Kg] (L )j , j = iteration counter. (18)

The incremental translations may be added directly to the previous solution total deflection

vector, U(j-1), forming the current deflection vector, U(j);

U(j)= U(j-1)+U(j) (19)

The incremental rotations are added to the total rotations via the following;

/u(j) =

ny (j) --

az(j) =

Rx(]-l) + term / CY

Ry ( j-1) + term

Rz(j- 1) + term/Cy

(2o)

where; term = Ry(j) * SZ + Rx(j) * CZ

SY = sin( Ry 0-1) )

SZ = sin(Rz(j-1) )

CY = cos( Ry(j- 1) )
cz = cos(az0-1) ).

Solution convergence may be determined from U0) or the change in strain energy. If the

solution does not meet the convergence criterion, then the iteration process continues thru another

pass. This continues until convergence is achieved or until the maximum allowable number of passes

has been completed.

The iteration process may be sped up by not rebuilding the stiffness matrix or the external load

vector during each pass. This may result in more iterations being required to achieve a converged

solution, but each iteration is faster due to fewer matrix operations. As the problem becomes more
nonlinear such "shortcuts" are not advisable. The nonlinear iteration process is successful only if the

first solution is relatively close to the converged answer.
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NonlinearAnalysisControlCards:

The nonlinear analysis is controlled through bulk data input cards. These cards define multiple

loads and application order, and the regeneration of the stiffness matrix and external load vector.

Each of the these cards is preceded by $$PARAM which indicates this card is a control card. The
nonlinear analysis is turned on or off through the NONLIN control card. A linear static analysis is

the default if no NONLIN control card exists. The load controller is called LOADID. Up to 8 loads
may be requested. Each load will be sequentially iterated until convergence is achieved or until

MAXITER has been exceeded. The next load is started using the previous load resultant deflection.

Load increments which are far apart may not provide sufficiently good initial estimations for the
iteration process to converge. The SKPMAT control card permits the user to specify which load cases

are to reconstruct the stiffness matrix during each iteration. The SKPLOAD card provides similar

control on the external load vector. Regeneration is the automatic default for both SKPMAT and
SKPLOAD. Use of the EIGEN card permits eigenvalue calculation for any converge load set. The

PRINT control card provides standard NASTRAN printed output for any converged load static and
eigenvalue analyses.

Nonlinear Anatysis Guidelines:

The major goal of any nonlinear analysis is producing a converged solution in a minimum of
computer time. As explained earlier, the iteration process success is dependent upon the starting

point it is given. A starting deflection vector which is far from the correct solution will not converge

or will converge very slowly. Therefore, the challenge lies in choosing a sequential series of partial
loads, each building on the previous, ending with the total load which produces the correct converged

solution. A structure which is nearly linear will need only a single load equal to the full load to
converge. A more nonlinear structure may require two, three, or more partial loads to achieve a

converged solution at the full load.

A poor load choice will be evident from two sources. First, convergence will not be achieved

within the MAXITR limits. Experience has shown if convergence is not achieved within 10 passes,
the load increment was too large. In such a case, the convergence criterion whether deflection or

strain energy based will oscillate and diverge. The second failure mode involves a 'Terminal Error'

issued from the program stating that a matrix operation failed due to a stiffness singularity. This

indicates the structure has become unstable or is 'buckling,' again indicating that the load increment
was too large. As the structure get closer to this buckling limit, the required load increment size will

decrease. In fact, some of the more aggressive propfan designs attempted by STAT have failed at part
speed loads.

3.3.7 Postprocessing of Finite Element Output

The STAT finite element code provides, as output, static displacements and stresses (for the

composite equivalent elements), as well as at-speed eigenvalues, eigenvectors and modal equivalent
stresses. Many of these data blocks must be postprocessed before they may be used either for

constraint evaluation or as input to other subroutines. Element stresses must be converted to
composite ply stresses for the static deformations and natural modes. Blade sectional mass properties

must be evaluated from the assembled finite element mass matrix. Additionally, the flutter analysis
requires frequency, mode shape, and generalized mass information.

The evaluation of static and modal composite blade ply stress values requires processing of the
element stress values based upon the application of lamination theory (Reference 5). The lamination

theory assumes that plane sections (through the plate thickness) remain plane after deformation. The
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laminate processor provides the matrices required to convert the element equivalent stresses to
membrane and bending strains. Then, based on the lamination assumptions, ply strains are

calculated, leading to ply stresses, and, ultimately, to the TSAI-WU tensor failure theory equivalent

stress evaluation (Reference 10).

The objective function for scale model tailoring requires the blade section mass distribution for

comparison with the full blade mass properties. The full sized, assembled finite element mass matrix
is used to evaluate the total mass at each radial station of the finite element blade by using a simple

averaging scheme. The difference between the inertia properties of the blade and its scaled model
are then evaluated.

The evaluation of flutter constraints requires that equivalent beam mode shapes be generated

from the available plate mode shape data, due to the beam theory of the present flutter codes. Beam
mode shapes are generated from the available plate mode shapes by performing a spline fit of each

component of the mode shape on each cross section. From the spline fit, modal bending and torsional
motions are determined at the section shear center, for transmittal to the flutter analysis.

3.4 Flutter Stability Analysis

The STAT flutter analysis performs both the unstalled and stalled flutter calculations. Each

flutter analysis proceedure is described as follows:

3.4.1 Supersonic Unstalled Flutter Analysis

The unstalled flutter stability subroutine was specifically tailored to model the structural and
aerodynamic complexities of the propfan. The blade structure is represented by fully coupled mode

shapes. The coupled modes take the form of translation normal to the blade surface at the mid-chord
and rotations about the blade mid-chord. The mode shapes are passed to the subroutine from the

finite element analysis routines. Unsteady airloads are formulated using strip theorywith no induced
velocities included. The blade is divided into a series of discrete aerodynamic panels of constant

property. Each panel is defined with plunging and pitching about the mid-chord reference specified
by the mode shape displacement definition. Unsteady, unstalled lift and moment equations for the

two- dimensional panels are generalizations of the unsteady swept aerodynamic equations generated
by Barmby, Cunningham, and Garrick in NASA TN 2121. The equations are modified to account for

compressibility and sweep. Cascade effects are taken into account in the analysis with an empirical

correction based on propfan model tests.

3.4.2 Stalled Flutter Analysis

The stalled flutter stability analysis is based on empirical data used to prevent torsional stall

flutter of propeller blades. The blade mode shapes passed to the subroutine are examined to
determine the torsion mode. The torsional frequency is then used to calculate a stall flutter parameter

that must be greater than one for a given configuration to be free from torsional stall flutter.

3.5 Airfoil Hot Geometry Update

As discussed in Section 3, the airfoils defined in the STAT input stream, and carried throughout

the STAT optimization process, are defined in the cold, or as manufactured, geometry. Defining the
STAT airfoils in this manner eliminates an iterative, difficult, time-consuming finite element analysis

step from the standard design process. In order to accurately determine the aerodynamic efficiency

and acoustic emissions of a propfan rotor, however, requires analyses performed for the hot, running
airfoil geometry.
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To providea proper description of the running geometry, STAT includes a geometry update
module. Working with each rotor stage separately, this module uses the airfoil cold meanline

geometry, and updates the geometry by the airfoil deflections obtained from the finite element

analysis, to determine the actual running position. Recall that STAT employs the air loads from the
previous design iteration. Since the air loads change little from iteration to iteration, the error

introduced in this process is quite small, and becomes negligible as the optimization process takes
smaller and smaller design changes near the optimized design.

The procedure used by the geometry update module is to use the meanline geometry for the cold
blade, and update the positions of the meanline points by the deflections obtained from the finite

element stress analysis. This new meanline is then converted back to a standard airfoil section by
updating the stacking coordinates, twist angle, and camber of the original airfoil definition. Thus, the
standard airfoil section that is closest to the actual running position is determined. This updated

airfoil description is then passed to the aerodynamic and acoustic analysis modules, to determine

efficiency, acoustic emissions, and updated air loads.

3.6 Aerodynamic Efficiency Analysis

The module used to calculate propeller efficiency is a high-speed propeller-nacelle

aerodynamic performance method (Reference 12). The method uses lifting line theory, with a swept

bound segmented vortex, and prescribed trailing segmented vortices. The induced velocity from each
vortex segment can be expressed, using the Biot-Savart equation, as a function of vortex segment

position, field point and the vortex strength. Through a matrix inversion, blade circulation and

induced velocity are solved.

The method contains compressible features for blade induction and blade profile losses. The

law of forbidden signals corrects the induced velocity when relative Math numbers are greater than

one. The compressible 2-D airfoil data used is also corrected for Maeh numbers greater than one

by applying a Math Cone correction (Reference 13).

The same method is used for both the approximate and refined analyses. The difference stems

from the number of radial stations used to define the airfoil geometry and aerodynamic flow. The

approximate analysis uses 10 radial stations, while 14 radial stations are recommended for refined
analyses. Additionally, the analysis is performed on the hot running position of the blade and is

therefore called after the finite element analysis has been completed, and a deformed, running

geometry has been determined.

For analysis of counter-rotation propfan systems, the rotor systems may have different blade
counts front and rear. This results in a loss of symmetry, resulting in a more detailed, much more costly

aerodynamic analysis. For STAT's approximate optimization procedure, the assumption has been
made that, for determining the system efficiency, two analyses of rotor systems of equal blade count

could be used to closely determine the efficiency of a system with unequal blade counts.

Thus, to analyze a rotor system with 10 blades in the front stage and 8 blades in the rear stage,
STAT performs two aerodynamic performance analyses. The first analysis is on a 10 X 10 system. The

results of this first analysis are used to determine the efficiency of the front stage. The second analysis,
on an 8 X 8 system, is used to determine the efficiency of the rear stage. The resulting overall

combined efficiency is very close to that obtained from a much more costly, 10 X 8 analysis. Checks

performed with a detailed, refined analysis showed this approximation to be very good - the efficiency

error was only 0.2 percent, with a significant computer expense savings.
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3.7 Acoustic Emissions Analysis

In the propfan design process, two acoustic emissions situations are important: far-field noise

and near-field noise. For a propfan design optimization, far-field noise is generally not included.
While a propfan must meet the Federal Aviation Regulation (FAR) P-136 noise limit to be

certifiable, the far-field noise depends primarily on the major design parameters, such as blade
count, tip speed, and power loading. As such, the design variables available to a STAT optimization
have little or no effect on the far-field noise, so this acoustic component is not included in the STAT

optimization system.

Near- field noise does not directly impact fuel burn, but it does affect aircraft system cost, as high
emissions imply an increased weight of fuselage acoustic treatment needed to achieve the required

cabin noise level. Thus, increased near-field noise results in increased aircraft weight, and hence,

a higher cost aircraft system.

Within STAT, the near-field noise calculation is based on the Hanson frequency-domain

propfan noise theory. Sources of near-field noise during high speed cruise include: blade thickness,

blade air loading, and nonlinear (quadrupole) effects. Factors that reduce the cabin noise level

include fuselage attenuation and wing shielding effects.

The nonlinear quadrupole noise, which is neglected by most calculation procedures, has been
found to be important for propfan applications. In fact, it has been found to be the dominant noise

effect at the higher harmonics for transonic tip speed conditions. Sweeping the propfan blade, either
forward or aft, has been shown to be a powerful method for reducing the near-field noise. This sweep

introduces a phase shift along the blade span, which promotes noise cancellation. Of course,
introducing blade sweep introduces structural complications such as increased stress, which must be

balanced through the STAT optimization process.

To account for the combined emissions effect of a counter-rotating propfan system, STAT
calculates the near-field noise of each individual rotor. The total near-field noise is then calculated

by using a root sum square method, with a factor included to account for rotor to rotor spacing.

The impact of near- field noise on fuel burn is through the weight of acoustic treatment required
to meet the cabin noise goals. Defining the treatment requirements is not trivial, due to the periodic

nature of the incident noise, which allows for interaction with the fuselage structural modes, as well
as cabin interior acoustic modes. The treatment calculation used by STAT is based on a double limp

wall concept developed by the Lockheed-California company. This procedure uses the exterior
free-field noise level as its input, and calculates the amount of acoustic treatment weight required

to meet cabin noise allowables. This acoustic treatment weight may then be translated to effective fuel

burn rates within the objective function module.

3.8 Once-Per-Revolution Forced Response Analysis

Due to the angle between the engine axis and the aircraft forward velocity vector, propfans are

subject to a relatively high once-per-revolution (l-P) excitation force. The system vibratory
response to this excitation must be calculated to ensure adequate fan durability.

3.8.10ne-P Loads

The propeller 1-P loads are calculated at a user-supplied airplane yaw angle. The method

utilizes Goldstein induction theory, Reference 11, and the same compressible 2-D airfoil data used
by the aerodynamic module to calculate the advancing and retreating blade peak to peak loads.
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The induced velocity is determined from Goldstein induction factors which are functions of local
radius, number of blades, and wake pitch. The induction factors are precalculated and tabulated from

the Goldstein equations. The wake pitch includes the induced flow, requiring an iteration for solution,

but allows the method to be used successfully for most propeller loadings. The module calculates
deflected 1-P loads.

For counter-rotating propfan systems, STAT performs the 1-P loading analysis on the
first-blade only. Loads for the second blade are generated by applying a load factor to the first blade
loads.

3.8.2 Forced Response Calculation

The calculated 1-P loads for the hot running position are used to calculate the modal load for

each of the first five blade frequencies. The modal loads are in turn divided by the blade frequency
generalized stiffness to define the static deflection due to the 1-P loads. For a given blade frequency
i:

g i -- M i * (0)i) 2 ... generalized stiffness

... static deflection
(21)

The static response is then amplified depending upon the one-dimensional forced response
magnification relationship (Reference 8) as follows;

r
Ri=

1 / [1 -

A i = Us i * R i ... modal amplification

(22)

to arrive at the modal participation factors for the first five blade frequencies.

The modal stresses multiplied by their participation factors are summed up for the first five
modes to calculate blade vibratory stress in response to the 1-P excitation load. Then the Tsai-Wu

layer stresses are processed using the calculated vibratory stresses and along with the Tsai-Wu layer

stresses calculated for the steady airloads and rotational force, a life limiting relationship was defined
as;

TWvsn_ +TWssn_ < 1.0 (23)

which implies that the sum of the vibratory and steady Tsai-Wu stresses for the nth layer of the kth
element must be less than one in order to avoid HCF failure due to 1-P excitation.

3.9 Objective Function

STAT supports the minimization of two distinct objective functions. The first objective function

seeks to maximize propfan performance and minimize operating cost by trading weight, effidency,

and acoustic emissions according to user-input trade factors. Should the user decide to include other

performance parameters such as power, sweep, or activity factor, coefficients may be defined for

weighting these factors also.

V

V
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".....j The second STAT objective function attempts to minimize the differences between a propfan
rotor system and its aeroelastic scale model, by tuning the scale model to match both static and

vibratory performance characteristics. In each case, the final STAT objective function is a summation
of the weighting factors times the appropriate performance factors over each stage in the propfan

system.

3.9.1 Propfan Performance Objective Function

Factors that determine the operating cost of a propfan rotor system include its aerodynamic

performance, its acoustic emissions, and its weight. The cost sensitivity factors, obtained from aircraft

or engine companies, varywith aircraft type, size and mission. The factors supplied for the STAT test
cases are based on a 120 passenger, 0.8 Math number, 1200 nautical mile, twin engine aircraft.

Generalizations for propeller gearbox weight and acoustic treatment weight are approximations but
are included in the DOC (direct operating cost) calculation. The DOC is calculated relative to a

user-defined baseline propeller.

At times, DOC is not of primary importance. The user may wish to find a rotor that meets the
durability requirements, yet minimizes sweep, for instance. At times, propfan activity factor is an

important design criterion. To provide the flexibility for optimizing on these non-cost objective

functions, the STAT objective function includes these parameters.

Thus, the STAT objective function is defined as a linear combination of noise, power, activity

factor, tip sweep, airfoil weight, and propfan efficiency, where the user supplies the weighting factors.
Note - the weighting factor for propfan efficiency will usually be negative, or STAT will seek the fan

system that has the minimum efficiency!

3.9.2 Aeroelastic Scale Model Tailoring

The definition of the objective function for the tailoring of an aeroelastic scale model of a

turboprop fan blade assumes both the sealed and full blade:

1. Have the same tip speed

2. Experience the identical aerodynamic, environmental conditions

3. Have the identical external geometry shape.

With these assumptions, the objective function is structured so as to minimize the following

relationships between the scaled and full blade:

¢
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(1)

(2)

,,,,a [&_-k , fs_]2
E
,.1 M2

M,,]2
,.,

... blade resonances

... mass distribution

V

(3)
i=1

... modal deflections

(4) ... static deflection

where: nmd represents the number of modes,
nst represents the number of blade stations,

S represents the scale model,
B represents the full blade,
f is natural blade frequency,
M is blade sectional mass,

0 is blade modal tip torsional deflection,
b is blade tip chord,

d is blade modal tip easywise bending deflection,

q_ is blade static tip untwist, and
k is the model scale factor.

The objective function is defined as the sum of the quantities (1) thru (4). In the limit, as the
objective function approaches zero, the aeroelastic differences between the full blade and its scale
model are minimized. How well the tailored blade models the aeroelastic characteristics of the full

blade depends on the depth of the comparisons made through the objective function and the accuracy
of the analytical tools used by STAT. The tailored scale blade will have similar flutter, resonance,

efficiency, acoustic, and static and modal deflection characteristics, but because the internal structure

of the blade is varied during the optimization process, stress distribution will not be comparable. Thus,

a scaled model optimization will have component material stress limits as perhaps the only constraint

for its analysis.

For counter rotation propfan systems, the above function is calculated for each rotor, and the

sum used as the system objective function.

%./
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4. VALIDATION TEST CASES

The STAT program has successfully demonstrated the potential of design optimization when

applied to turbo propfan blades of composite construction. The STAT program has been successfully
applied to single rotation and counter rotation propfan rotor designs. In all cases, STAT has been able

to improve the existing designs, and in all cases finding feasible designs much more quickly than was

possible using conventional, manual design iteration processes.

Additionally, the STAT propfan optimum design system has proven to be capable of constructing

aeroelastic scale models of both single rotation and counter rotation propfan rotor designs.

4.1 Single-Rotation Propfan Applications

The tailorings of two turbo single-rotation propfan (SRP) rotors were performed successfully

using STAT. For these particular cases, the objective function was defined as the aircraft change in

direct operating cost (DOC). The DOC was calculated from input aircraft sensitivity factors, and
calculated values of propeller efficiency, aircraft fuselage noise level, and propeller weight all relative
to the user- defined baseline performance of the SR7 LAP blade. The sensitivity factors used to weigh

the different contributors apply to a 120 passenger, 0.8 Mach number, 1200 nautical mile, twin engine
aircraft.

\._j

The two large advanced-scaled propfan (LAP) blade designs are directly related to one

another. The 18E LAP blade is one of the several preliminary designs (87th of a total of 100 designs)
of the project from which the SR7 LAP design evolved. The internal composite construction and

material, the physical constraints of stress, flutter, power, and resonances, the aerodynamic
environment and the blade attachment definitions were all identical for the two designs. But, the

external geometry parameters (such as stacking, thickness, twist) of the blades were uniquely defined.

The third and final SRP validation test ease was to develop an aeroelastic scale model

representation of the SR7 LAP design. The objective function for this optimization process was given
careful thought so that the model developed would take on the identical dynamic and static

characteristics of the SR7 design. The objective function calculated differences in blade mass

distribution, static tip deflection, modal tip deflections and resonances.

4.1.1 The Infeasible 18E LAP Design

The 18E LAP blade design was a preliminary design of the SR7 which was overly stressed for
the once per revolution forced response condition. The blade is of a composite construction

incorporating a nickel sheath layer for protection against foreign object damage, a fiberglass outer
shell, an internal aluminum spar, and foam used to fill the gaps between the spar and the shell to

prevent localized shell buckling. The internal construction of the blade is shown in Figure 4. The
external geometry of the blade is defined by eight spanwise distribution curves that include blade

stacking, twist, chord, thickness, and other pertinent parameters. Figures 5 through 12 summarize the

external definition curves of the 18E blade design.

The 18E design constraints involve blade geometry, resonance margins, static stress, once per

revolution force response life fraction, classical flutter Mach number, stall flutter and maintaining

required driving power. The STAT 1BE constraints are summarized in Table 5.
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Table 5 STAT 18E and SR7 Design Constraints

Blade Geometry. Blade Resonance Mac_ins

• Thickness�chord minimums to avoid buckling * 1st mode 2E - 10%

• Set realistic upper and lower boundaries for all • 2nd mode 4E - 5%
variables " ' -

Maintain root stacking position relative to the •
attachment

Blade Flutter

• Classical flutter Mach number > 0.8

• Stallflutterparameter > 1.0

Power

Propfan driving power must be maintained at
2592 hp

2nd mode 5E - 2.5%

• 3rd mode 5E - 25%

Blade Stress

• Tsai-lVu layer steady stress < 1. 0

• Once-per-revolution .force response
fraction < 1.0
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Thevariablesusedtooptimizethe18Edesignincludedbladetwist,axialstackingandtangential
stacking.The stackingvariableswereusedsoasto solvethe high stressproblems,and the twist
variableswereusedto maintainthepowerrequiredto drivethepropeller. TheSTATvariablesand
their bladelocationsaresummarizedinTable6.

Table 6 STAT18E Optimization Results

Design Variables Change Limits Opt Update

Blade Twist

45.5% -90 to 90 degrees 1.131

6Z6% -90 to 90 degrees 0.2432

78.5% -90 to 90 degrees -0.0287

100.0% -90 to 90 degrees -0.2977

Tangential Tdt

45.5% -10 to 10 inches 0.0679

67.6% -10 to 10 inches 0.0116

78.5% -10 to 10 inches 0.0341

100.0% -10 to 10 inches -0.0023

Axial Tilt

45.5% -I0 to 10 inches O.1885

6Z6% -10 to 10 inches 0.0334

78.5% -10 to 10 inches 0.0834

100.0% -10 to 10 inches -0.0036

Desi_zn Constraints Limits _ Final

Resonances

1st mode 2E 0.10 margin -0.0704 -0.1146

2nd mode 4E 0.05 margin -0.2353 -0.2925

2nd mode 5E 0.025 margin -0. 4033 -0.4490

3rd mode 5E 0.025 margin -0.1640 -0.2680

Steady Stress (Tsai- IVu)

Sheath 1.0 0.1325 0.3512

Shell 1.0 0.1862 0.5003

Foam 1.0 0.0048 0.0281

Spar 1.0 0.0086 0.0127

One-P Forced Response

Life Fraction 1.0 1.5 O.7486

Flutter

Flutter Mach Number 0.8 0.1063 O.1019

Stall Flutter L 0 0.3216 0.5636

Driving Power 2592. 2414. 2459.

Objective Function 0.0479 0.0438
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The optimization results of the 18E design are quite impressive. After a total of 147 function
calls, which included 10 complete design iterations, the STAT program produced a feasible design with

an improved DOC. The blade's stress problems were solved in five complete design moves but then,

the power equality constraint became violated. The power constraint and all other constraints were
satisfied after the sixth design move was completed. The initial design curves are compared with the

optimized curves in Figures 13 through 15, for the blade twist, tangential stacking, and axial stacking,

respectively.
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4.1.2 The SR7 LAP Design

The SR7 design has the identical internal composite construction of the 18E (Figure 4), as well

as the same design constraints (Table 5). The blade design differences arise with the external geometry
definition. The SR7 and 1BE external geometry curves are provided for comparison in Figures 16
to 23.

The SR7 design was optimized using 38 variables which included most all of the parameters

necessary to describe the blade. A list of the 38 variables used in the large variable test case is given
in Table 7.

Unlike the 18E design, the SR7 LAP blade initially satisfied all of the design constraints. For
the large, 38 variable test case, the STAT optimizer was allowed to converge to an optimum design

using the ADS algorithm 'Modified Method of Feasible Directions.' The final result was a LAP blade

with a DOC improvement of 5.0 percent. However, this particular STAT test case unveiled one of
several shortcomings to the new ADS autoscaling procedure. In scaled space, the once-per-

revolution forced response life prediction constraint is only slightly violated, such that the optimizer
classifies it as an active, not a violated constraint, and thus considers the design as acceptable.

However, when the design space is unsealed, the measure of the constraint violation has changed in
such a manner as to make it unacceptable.

Because of the violated one-p stress constraint, a second step STAT optimization analysis was

performed without the use of ADS autoscaling and using just 12 variables to restack the optimum

blade from the prior optimization results to solve the stress problem. STAT was able to quickly find
a feasible design, which is summarized in Table 8.

Finally, the results of the STAT SR7 optimization test case were analyzed using refined analyses

for the aerodynamic, acoustic, flutter and finite element analyses so as to validate the optimum design.

From Table 9, it is obvious that the approximate acoustic analysis is not properly predicting near- field
noise trends for changes in blade design. Nevertheless, all of the constraints have remained satisfied

and the final refined DOC shows a 3.0 percent improvement over the SR7 design.
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Table 7 The SR7 STAT Optimization Results

Des(tin Variables Delta Limits Delta

Exterior Geometry.

Thickness�Chord:

25% Span

43. 75% Span

62. 5% Span

81.25% Span

100. % Span

Chord:

25% Span

62 5% Span

100. % Span

Lift Coefficient

45. 47% Span

78. 45% Span

100. % Span

Twist:

45. 47% Span

67. 62% Span

78. 45% Span

100. % Span

Tangential T'dt:

45. 47% Span

6Z 62% Span

87. 80% Span

100. % Span

Axial T'dt:

45. 47% Span

6Z 62% Span

87. 80% Span

100. % Span

-0.10 to 0.20

-0.04to0.20

-0.02to0.20

-0.015 to 0.20

-0.005 to 0.20

-16.2 to 2700 inches

-16.2 to 2700 inches

-4.32 to 2700 inches

-0.15 to 1.0

-0.15 to 1.0

-0.15to1.0

-90. to 90. degrees

-90. to 90. degrees

-90. to 90. degrees

-90. to 90. degrees

-1.E+5 to 1.E+5 inches

-1.E+5 to 1.E+5 inches

-1.E+5 to 1.E+5 inches

-1.E+5 to 1.E+5 inches

-1.E + 5 to 1.E + 5 inches

-1.E+5 to 1.E+5 inches

-1.E+5 to 1.E+5 inches

-1.E+5 to 1.E+5 inches

0. 04677

- 0. 00183

-0. 00088

0. 000 72

-0.00500

0. 93668

0. 03616

0.573O2

- 0. 04704

0. 08 776

0.28535

-0.01644

-0.29220

0.14895

-0.62752

0.01603

0.06273

-0.03222

0.93204

-0.10362

0.21488

-0.46021

0.37737

* Active Constraint

** Violated Constraint
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Table7 The SR7 STAT OptimizationResults(continued)

" vp.agaLY_ abl Delta

Interior Geometo,

Aluminum Spar:

Spar Meanline:

25. % Span

62. 5% Span

100. % Span

Spar Width:

25. % Span

62.5% Span

100. % Span

Fiberglass Shell:

Shell Thickness:

25. % Span

62.5% Span

100. % Span

Nickel Sheath:

Sheath Width:

50. % Span

75. % Span

100. % Span

Sheath Thickness:

50. % Span

75. % Span

100. % Span

Sheath Cutoff."

D_sien Constraints

Resonances:

1st Mode 2E

2nd Mode 4E

2nd Mode 5E

3rd Mode 5E

V

-40. to 40. % chord

-40. to 40. % chord

-40. to 40. % chord

-25. to 25. % chord

-25. to 25. % chord

-25. to 25. % chord

-0.03 to 1.0 inch

-0.03 to 1.0 inch

-0.03 to 1.0 inch

-4.5 to 50. % chord

-12.5 to 50. % chord

-22. 5 to 50. % chord

-0. 019 to 1. 0 inch

-0.019 to 1.0 inch

-0.019 to 1.0 inch

-50. to 50. % span

Limits

0.22064

0. 62621

0.63647

0. 83816

1.1 6400

0.04701

0.00378

0. 00225

- 0. 01143

0. 00000

-1.89890

11.20300

-0.00175

0.00058

0.00749

-0.45328

0.10 margin -0.16745 - 0.19021

0.05 margin -0.30118 -0.30302

0.025 margin -0. 44095 -0. 44241

0.025 margin -0.17329 -0.13726

V

* ActiveConstraint

** ViolatedConstraint

42



Table 7 The SR7 STAT Optimization Results (continued)

Desien Constraints Lim_s _

Steady Stress (Tsai-Wu):

Sheath 1.0 0. 04634 O.11491

Shell 1.0 O.05095 O.05106

Foam 1. 0 O.00730 O.00282

Spar 1.0 O.00252 O.O1029

1-P Force Response Life Fraction 1.0 O.45857 1.13282"*

Flutter:

Flutter Mach Number 1.0 1.0332 1.0545

Stall Flutter 1.0 1. 7509 1. 7316

Driving Power 2592 2592 2582 2*

Objective Function _ Final

Direct Operating Cost:

Efficiency O.00004 - 2 96046

Noise -0.09135 -202210

Weight -0. 03293 -0. 03627

_ Acquisition - O.01490 - O.01348
_,,_./

Maintenance - O.00546 - O.00494

Total = -0.14460 -5. 03716

Efficiency (%) 80. 528 84. 529

Noise (db) 143.43 139. 73

Weight (lb) 42170 43.144

* Active Constraint
** Violated Constraint

',,..j
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Table8 The SR7 STAT OptimizationtoResolvetheV'zoiatedConstraint

Des(tinVariables _

Exterior Geometry:

Twist:

45. 47% Span

67. 62% Span

78. 45% Span

100. % Span

Tangential Tdt:

45. 47% Span

6 Z 62% Span

87.80% Span

100. % Span

Axial Tdt:

45. 47% Span

67.62% Span

8Z 80% Span

100. % Span

... degrees

-0.01644

-0.29220

0.14895

-0.62752

... inches

0.01603

0. 06273

-0. 03222

0.93204

... inches

-0.10362

0.21488

-0.46021

0.37737

O.10 margin

0.05 margin

0. 025 margin

0. 025 margin

Design Constraints

Resonances:

1st Mode 2E

2nd Mode 4E

2nd Mode 5E

3rd Mode 5E

Steady Stress (Tsai-Wu):

Sheath 1.0

Shell 1.0

Foam 1.0

Spar 1.0

1-P Force Response Life Fraction 1.0

Flutter:

Flutter Mach Number 0. 8

Stall Flutter 1.0

Driving Power 2592.

-0.19021

-0.30302

-0. 44241

-0.13726

0.11491

0.05106

O.00282

0.01029

1.13282"*

1.0545

1. 7316

2582.2*

-0.01645

-0.29220

0.14898

-0.62752

-0.11452

- 0. 01893

0.34029

0. 98172

-0.19449

0.21457

-0.66312

0.56592

- 0.19091

-0.30279

-0. 44223

-0.13636

0.08918

0. 04861

0. 00295

0. 00950

0.87552

1.0882

1.7284

2566.3*

* Active Constraint
** Violated Constraint V
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Table8 The SR7 STAT OptimizationtoResolvetheV'tolatedConstraint(continued)

Obiective Function _ Final

Direct Operating Cost:

Efficiency

Noise

Weight

Acquisition

Maintenance

Efficiency(%)

Noise (db)

Weight(Ib)

Total=

-296046

-202210

-0.03627

- O.01348

-0. 00494

-5.03716

84.529

139.73

43.144

-291146

-253920

-0.02423

-0.01114

-0.00408

- 5. 49406

84.468

138.37

43.189

* Active Constraint
** Violated Constraint

_..t J
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Table 9 Refined Versus Approximate Analysis for the Initial and Optimum SR7 Designs

Hamilton Standard Relined* STAT.4pprqximate STAT Refincd

V

Effzciency (%):

Initial 79. 4 80. 5 80.1

Optimum 84. 5 84. 6

Near Field Noise (db):

Initial 143. 143. 4 145. 4

Optimum 138. 4 146. 0

Blade Weight (lb):

Initial 41.65 42.18 40. 45

Optimum 43.19 41.31

Flutter (Mach):

Initial O.95 1.033 O.867

Optimum 1.088 0.911

Stall Flutter:

Initial ** 1.751 1. 760

Optimum 1. 728 1.694

Driving Power (hp):

Initial 2592. 2592. 2526.

Optimum 256Z 2506.

Maximum Stress (Icpsi):

Initial ** 11.0 10. 6

Optimum 12 0 12.1

Blade Resonances (Hz) :

Initial

1st Mode 43.2 46. 6 46.8

2nd Mode 80.1 78.3 78.0

3rd Mode 101.0 115. 7 114.1

Optimum

lst Mode 45.3 45.6

2nd Mode 78.1 77.5

3rd Mode 120. 9 120. 4

Blade DOC (%):

Optimum -5.6 -3.0

V

* Sullivan, W. E., J.. E. TumbergandJ..A. l,qolette, "Large-ScaleAdvancedProp-Fan SR-7

Blade," NASA Contract NAS3-23051.
** Not available.
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4.1.3 The Aeroelastic Scale Model - The SR7a

The SR7a blade is an aeroelastic scale model representation of the SR7 LAP blade design. The

composite aeroelastic scale model (2/9 size) has a total of 12 separate layers. The blade shell is a
uniform outer coat of 0.002-inch fiberglass and 3 layers of graphite intertwined among 4 layers of
fiberglass cloth. The innermost fiberglass layer is glued to a titanium spar, and the remaining gaps

are filled with foam. The spar ends at 80.6 percent span, above which the blade is filled with fiberglass

(Figure 24).

Fiberglass
Shell

Outer Middle Inner Titanium
Graphite Ply Graphite Ply Graphite Ply Spar

Figure 24. Composite Construction of the SRTa

The exterior geometry of the blade is fixed to that of the SR7 design; therefore, design variables
are limited to alterations to the internal construction and the retention stiffness. The design

constraints are all weighted into the objective function since, the final optimum will be a model with
the identical static and dynamic characteristics of the SR7 design which satisfies all design constraints.

STAT, using the current SR7a geometry as an initial guess to the optimizer, improved the model

dramatically in just five complete design moves which involved a total of 213 function calls. The

optimizer had not yet converged to an optimum design (i.e., it was allowed to make only five complete
design moves) which implies that even greater improvements to the model could have been achieved.
The results of this test case show that the objective function definition, as described earlier here within,

was adequately structured to properly account for aeroelastic differences between the full scaled
blade and its model. The results of the SR7a STAT test case, including a comparison between the SR7

and SR7a aeroelastic properties, are summarized in Table 10 and Figure 25.
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Table 10 The SRTa STAT Optimization Results

Desi_zn Variables Delta Limits De_a

Attachment

Diameter -1.0 to 2.0 inches -0.05575

Length -1.0 to 2.0 inches -0.06378

Outer Graphite Ply

Lower Cutoff -100. to 100. % span 0.28229

Upper Cutoff -100. to 100. % span 4.20610

PlY Orientation -90. to 90. degrees 1.26720

PlY Meanline:

30.% Span -25. to 25. % chord 0.72419

60. % Span -25. to 25. % chord 16.47200

90. % Span -25. to 25. % chord Z09530

Ply Width:

30. % Span -25. to 25. % chord 0.22693

60. % Span -25. to 25. % chord 10.22300

90. % Span -25. to 25. % chord 4.24170

Middle Graphite Ply

Lower Cutoff -100. to 100. % span -5.32560

Upper Cutoff -100. to 100. % span 5.05070

Ply Orientation -90. to 90. degrees -1.00770

Ply Mean line:

35. % Span -25. to 25. % chord 2.17050

60. % Span -25. to 25. % chord 1.04900

85.% Span -25. to 25. % chord 1.79730

Ply Width:

35.% Span -25. to 25. % chord -0.13600

60. % Span -25. to 25. % chord 2.46400

85.% Span -25. to 25. % chord 2.60010

Inner Graphite Ply

Lower Cutoff -100. to 100. % span -4.82330

Upper Cutoff -100. to 100. % span -0.71739

Ply Orientation -90. to 90. degrees 0.30925

Ply Meanline:

35. % Span -25. to 25. % chord 1.23910

4Z5% Span -25. to 25. % chord 3.07600

60.% Span -25. to 25. % chord 0.39277

V
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Table 10 The SR7a STAT Optimization Results (continued)

Design Variables _ Dg.Ila

\

PlY Width:

35. % Span

4Z5% Span

60.%Span

T_tanium Spar

Upper Cutoff

Spar Meanline:

25.%Span

50.%Span

75.% Span

Spar Width:

25. % Span

50. % Span

75. % Span

Fiberglass Filler Lower Cutoff

Qbj¢ctive Function

Mass Distribution

Resonances

Static Deflection

Modal Deflection

Total Value =

8R7, SR7a Comvari#on SR7

Efficiency (%) 81.589

Noise (db)

Weight (lb)

_.,.,,J¢

Driving Power (hp)

Flutter Mach Number

Stall Flutter

Resonances:

lst Mode

2nd Mode

3rd Mode

-25. to 25. % chord

-25. to25. %chord

-25. to 25. % chord

-100. to 100. % span

-25. to25. %chord

-25. to25. %chord

-25. to25. %chord

-25. to 25. % chord

-25. to 25. % chord

-25. to25. %chord

-100. to 100. % span

0.44986

0.02914

0. 03898

1.22790

1.7485

SR7a Initial

82.695

143.44 143.24

42.170 0.52737

Tunes Scale Factor Cubed: 45.174

2592.0 2453.4

1.0332 1.0733

1.7509 1.5782

0.21038

2.36390

-0.03735

1.89600

-_02210

24.42800

-5.91010

-2.09210

626880

1.77210

-1.68310

Final

&41948

&00620

&13837

&62513

1.1892

SR7aFinal

81.644

143.47

&45596

3_057

2593. 4

1.0051

1.6375

46.623 218.59 206.12

Divided by Scale Factor:. 49.588 46.759

78.267 399.44 372.09

Divided by Scale Factor:. 90.614 84.409

115. 74 502. 78 50Z 19

Divided by Scale Factor:. 114. 06 115. 06
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Fiberglass
Shell

l

/

/ t
Outer Middle Inner Titanium

Graphite Ply Graphite Ply Graphite Ply Spar

V

Figure 25. Initial and Optimum Design Composite Construction Overlay Plots of the SRTa

4.2 Counter-Rotation Propfan Applications

To evaluate STAT's performance for the optimization of counter-rotating propfans (CRP), the

program was applied to two configurations - a full size CRP,, and a scale model CRP.

4.2.1 Full Size Counter-Rotation Propfan

Prior to application of the STAT program, Hamilton Standard had never designed a full size CRP

- all CRP experience had been on scale model configurations, in particular the 17 percent size
aerodynamic scale model CRPX1. To generate a full size CRP design, the scale model CRPX1

geometry was expanded to full size (12.0 ft tip diameter). A spar-shell construction, similar to the
SR- 7 SR.P, was selected. Thus, it was likely that the newly developed full size CRP would not meet

design structural requirements.

The blade is of a composite construction incorporating a nickel sheath layer for protection

against foreign object damage, a fiberglass outer shell, an internal aluminum spar, and foam used to
fill the gaps between the spar and the shell to prevent localized shell buckling. The overall construction

of the blade is shown in Figure 26, which includes the chordal projection of the shell, along with
overlays of the sheath and the spar. The shell thickness tapers along the span, as shown in Figure 27.

Both front and rear blades are assumed to have similar composite construction.

The external geometry of each rotor is defined by eight spanwise distribution curves that include

blade stacking, twist, chord, thickness, and other pertinent parameters. Figure 28 shows the spanwise
distributions of the twist (beta) and cone angles for the front blade. Figure 29 shows the thickness

(HOB), chord (BOD), and lift coefficient (CLD) distributions for the front airfoil. Figure 30 shows
the front blade X stacking, and Figure 31 shows the tangential (YOR) and axial (ZOR) stacking

distributions. Figures 32 through 35 show the corresponding geometry definitions for the rear rotor
of CRP1.

V

50



v

Figure 26. Full Size CRP Composite Construction Planform
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Figure 28.
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Constraints applied to the CRP1 design optimization apply to both rotor stages, as well as to the

rotor system. The constraints include limits on the blade geometry, vibratory resonance margins,
static stress, once-per-revolution forced response life, classical flutter Mach number, stall flutter

parameter, and rotor power. Thus, all the constraints normally associated with the propfan design
process have been applied to this design optimization. The CRP1 design constraints are detailed in
Table 11.

Table 11 CRP1 Design Constraints

Blade Geometry.

• Thickness�chord minimums to avoid

local airfoil buckling

• Realistic upper and lower limits for all
design curves

• Maintain root stackingposition relative
to blade attachment

Blade Flutter

• Classical flutter Mach number > 1.0

• Stallflutterparameter > 1. 0

Power

• Front rotorpowerof5349.6 hp

• Rearrotorpower of 5349.6 hp

Blade Resonance Margins

• 1st mode 2P - 10%

• 2ndmodeSP - 2.5%

• 3rdmode5P-2.5%

Blade Stresses

• Tsai-Wu layer steady stress factor < 1. 0

• Once-per-revolution forced response life
fraction < 1.0

V

The first step in the blade optimization process is to evaluate the initial design configuration.
The base CRP1 did not have the correct power output, and the once-per-revolution stresses were

excessive. To correct this design limitation, the optimization process was employed.

The objective function for the optimization was to minimize a combination of efficiency and
weight, equal to:

DOC = 0.0013 * (System Weight, lb) - 74 * (System Efficiency).

This trade of weight and efficiency is the same objective used in the SR7 SRP optimizations.

To adjust the propfan power output, the most powerful design variable is twist angle. To control

stresses, tangential and axial tilts have powerful effects. Thus, each blade was given a number of these
quantities to treat as design variables. Additionally, spar width and chordwise position and shell

thickness were allowed to vary. This provides additional stress and frequency tuning capability to the
STAT design optimization process. The full set of design variables, along with their respective
spanwise positions and variation limits are listed in Table 12.

V
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Table 12 CRP1 Design Variables

\

Design Variable

Front Twist

Front Tangential T'dt

Front Axial T'dt

Rear Twist

Rear Tangential Tilt

Rear Axial 7"dt

Spar Meanline

Spar Width

Shell Thickness

% S_DanLocation

45.47

78.45

100.0

67.62

100.0

67.62

100.0

6Z62

100.0

67.62

100.0

67.62

100.0

23.89

64.81

100.0

Lower and Upper [jmit

-90. to +90. degrees

-90. to +90. degrees

-90. to +90. degrees

-0.1 to +0.1 inches

-0.1 to +0.1 inches

-0.1 to +0.1 inches

-0.1 to +0.1 inches

-90. to +90. degrees

-90. to +90. degrees

-0.1 to +0.1 inches

-0.1 to +0.1 inches

-0.1 to +0.1 inches

-0.1 to +0.1 inches

-0.4 to +0. 4 (chord fraction)

-0.4 to +0. 4 (chord fraction)

-0.4 to +0.4 (chord fraction)

23.89 -0.25 to +0.25 (chord)

64.81 -0.25 to +0.25 (chord)

100. 0 -0.25 to +0.25 (chord)

23.89 -0.02 to +1.0 inches

64.81 -0.02 to +1.0 inches

100.0 -0.02 to +1.0 inches

With the above listed 22 design variables, a STAT optimization of the CRP1 blade was executed.

STAT terminated, having found its candidate optimum, on analysis #281. This analysis included 39

design candidates. The remainder of the analysis calls were gradient evaluations. The final values

for the design variables are listed in Table 13. To even find a feasible design was quite a chore - STAT's
first feasible design was on analysis #200.
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Table 13 CRP1 Optimization - Design Variable Changes

Final Value Variable Final Value

Front Twist: Rear Twist:

45% 2.5969 68% 0.1268

78% -0.0600 100% -0.0573

100% O.1347 Rear Tangential Ttlt:

Front Tangential 7"dt: 68% 0.00047

68% 0.00059 100% - O.02491

100% -0.05759 Rear Axial Ttlt:

Front Axial Tdt: 68% O.00041

68% -0.00005 100% -0.00146

100% 0.02123

Spar Meanline:

24% - O.01435

65% -0.02183

100% -0.00568

Spar Width:

24% 0.01154

65% 0.02312

100% O.00099

Shell Thickness:

24% 0.00088

65% 0.00060

100% 0.00058
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:,.j
_ Table 14 compares the performance characteristics of the initial CRP1 design with those of the

optimized rotor system.

Table 14 CRP1 Optimization - Constraint Values

Constraint Limit Initial Des_n Optimal Design

Front Blade

Resonances:

1st Mode 2P 221 (U) 32 33

2nd Mode 5P 600 (U) 81 85

3rd Mode 5P 600 (U) 105 113

Steady Stress (Tsai-Wu):

Sheath 1.0 (U) 0.1743 0.2138

Shell 1.0 (U) 0.3873 0.0604

Spar 1.0 (U) 0.0149 0.0161

Foam 1.0 (U) O.0085 O.0033

Flutter:

Flutter Mach Number 1. 0 (L) 1.95 1.95

Stall Flutter Parameter 1. 0 (L) 1.46 1.71

1 -P Forced Response Life Fraction 1.0 (U) 3.155 - V O.995 - A

Driving Power (hp) 5350 (E) 3113 - V 4975 - A

Weight (lb) 105 111

Efficiency (%) 0.813 O.735

Near-Field Noise (db) 138 139

Rear Blade

Resonances:

1st Mode 2P 221 (U) 32 34

2rid Mode 5P 600 (U) 82 85

3rd Mode 5P 600 (U) 99 101

Steady Stress ( Tsai - Wu ) :

Sheath 1.0 (U) O.4953 O.1280

Shell 1. 0 (U) O.4026 O.1201

Spar 1.0 (U) O.0123 O.0107

Foam 1.0 (U) O.0087 O.0064

x....j

L_I

Where: (L) - denotes lower limit V - denotes violated constraint
(U) - denotes upper limit A - denotes active constraint
(L) - denotes equality constraint
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Table 14 CRP1 Optimization - Constraint Values (continued)

Constraint _ Initial Deem Optimal Design

Flutter:

Flutter Mach Number 1.95 1.80

Stall Flutter Parameter 1.36 1. 40

I-P Forced Response Life Fraction 3. 99 - V O.964 - A

Driving Power (hp) 4159 - V 5813 - A

Weight (lb) 95 100

Efficiency (%) 0.834 O.789

Near-Field Noise (db) 138 140

CRP Rotor @stem:

Net Efficiency O.825 0. 764

Objective Function O.254 O.269

V

1.O (L)

1.0 (L)

1.o (v)
535o(E)

Where: (L) - denotes lower limit V - denotes violated constraint

(U) - denotes upper limit A - denotes active constraint
(L) - denotes equality constraint

The updates made to the CRP1 design curves by the STAT program are illustrated in Figures

36 through 43. Figure 36 shows the optimized spar chordal planform (solid line), compared with the
original planform (dotted line). Figure 37 shows the changes made by STAT to the front airfoil twist

distribution. As shown on Figure 38, the rear blade twist was adjusted only slightly. Figure 39 shows

that significant changes were made to the front blade tangential stacking. The rear prop tangential
stacking was much less altered, as shown on Figure 40. The airfoil axial stackings were much less

altered, as shown on Figure 41 for the front blade, and Figure 42 for the rear. The final curve to be

updated by the CRP1 optimization was the shell thickness. Figure 43 shows the slight overall shell
thickness increase prescribed by the STAT optimization process.

V
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Figure 36. Optimized CRP1 Spar Chordal Planforrn
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4.2.2 Scale Model Counter Rotation Propfan

The CRP1 optimization of Section 4.2.1 having established a viable counter rotation propfan
rotor set, it is now reasonable to ask STAT to develop an appropriate aero-elastic scale model of

CRP1 for wind tunnel validation and performance test. The aerodynamic similarity optimization
capability of STAT permits just such a process.

Where the full size CRP1 was a composite shell on a metallic spar construction with foam fill,

the reduced diameter of the scale size wind tunnel somewhat restricts the available design freedoms
of the STAT program, limiting us to laminated composite constructions. The external shape of the

scale model is fixed to a photographic scale of the optimized CRP1 for performance considerations.
Thus, any structural and aero-structural tuning must be performed through tailoring of the

composite laminates, including ply shapes and orientation angles.

As with the SRP scale model test case of Section 4.1.3, all scale model rotor performance
parameters are contained within the objective function, which is now a summation over both of the

rotor stages, as detailed in Section 3.9.2. Thus, the only constraints for this optimization (never active
in this validation case) are the ply stress limits, to ensure test-worthiness.

For this validation case, it was decided to attempt construction of a 1/6 size scale model of the
optimized CRP1, while minimizing the frequency differences between the two constructions. The

exterior shape of the scale model was defined by updating the CRP1 design curves to their optimized

configuration. Utilizing the proper scaled blade tip chord, STAT then generated the scaled blade
shapes.

A laminated composite construction similar to that of the SR7a was employed for the scale

model blades, using a fiberglass shell on alternating glass and graphite plies, with the innermost
fiberglass glued to a titanium spar. Gaps are filled with glue.

The design variables, listed in Table 15, allow for modification of the interior construction of the

composite airfoils by reshaping the graphite plies and the spar. A total of 35 design variables were
employed for this test case, making this the largest STAT optimization performed to date.

For the objective of the scale model optimization, it was chosen to minimize the fractional
frequency deviations for each of the two rotors between full size and scaled size, over the first five

natural modes. Actually, the originally configured scale model geometry gave quite good initial
frequency correlation, thus limiting the performance of the optimization capability. Nonetheless, an

optimization was performed, with a resulting i5 percent improvement in frequency correlation. The

optimization took a total of 285 design evaluations, using 7 complete design moves, and reached a
converged optimum design. The final design variable values are listed on Table 16.

The frequency similarity based objective function values, along with the component frequencies,
are listed on Table 17. The initial configuration for the scale model system gave good frequency

correlation. The optimized system further improved the correlations.
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Table 15 Scale Model CRP Design Variables

_ Lower and U__operLimit

Graphite Ply 1:

Lower Cutoff

Upper Cutoff

Ply

Meanline Location

Chordwise Extent

Graphite Ply 2:

Lower Cutoff

Upper Cutoff

ely
Meanline Location

Chordwise Extent

Graphite Ply 3:

Lower Cutoff

Upper Cutoff

Meanline Location

Chordwise Extent

Spar:.

Upper Cutoff

Meanline Location

Chordwise Extent

Fill:

Lower Cutoff

3O
60
90

30
60
90

35
60
85

35
60
85

30
47.5
6O

30
4Z5
60

25
50
75

25
50
75

-I to +1

-1 to +1

-90 to +90 degrees

-0.25 to +0.25
-0.25 to +0.25
-0.25 to +0.25

-0.25 to +0.25
-0.25 to +0.25
-0.25 to +0.25

-1 to +1

-1 to +1

-90 to +90 degrees

-0.25 to +0.25
-0.25 to +0.25
-0.25 to +0.25

-0.25 to +0.25
-0.25 to +0.25
-0.25 to +0.25

-1 to +1

-I to +1

-90 to +90 degrees

-0.25 to +0.25
-0.25 to +0.25
-0.25 to +0.25

-0.25 to +0.25
-0.25 to +0.25
-0.25 to +0.25

-1 to +I

-0.25 to +0.25
-0.25 to +0.25
-0.25 to +0.25

-0.25 to +0.25
-0.25 to +0.25
-0.25 to +0.25

-1 to +1
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Table 16 Optimum Scale Model CRP

Design Variable % Span Location Desien Variable Change

Graphite Ply 1:

Lower Cutoff

Upper Cutoff

Meanline Location

Chordwise Extent

Graphite PlY 2:

Lower Cutoff

Upper Cutoff

Meanline Location

Chordwise Extent

Graphite Ply 3:

Lower Cutoff

Upper Cutoff

Ply
Meanline Libation

Chordwise Extent

Spar.

Upper Cutoff

Meanline Location

Chordwise Extent

Fill:

Lower Cutoff

30
60
90

30
60
90

35
6O
85

35
6O
85

30
4Z5
6O

30
4Z5
60

25
50
75

25
50
75

O.013165

O.027255

0. 050436

-0. 045404
-0. 030971
-O. 018440

0.016945

0. 025627
O.048033

0.007975

O.025680

O.046841

O.006383
-0.053419
-0. 095086

O.014481
- O.046894
- O.036355

0. 008776

O.017896

0.050115

0.014423
0.090104

-0. 008475

O.008042
O.009984
O.004529

0. 022765

-0.007160
-0. 048541

0.038536

0. 007792
0.010713
0. 031805

0.020743
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Table 17 Scale Model CRP Frequency Correlation

V

Base Blade Scaled Base

Frequen_ _DS) Frequen_ (cps)

Front Blade

1 33.4 193.6

2 85.1 500.1

3 113.0 664.1

4 123.6 726.4

5 174.1 1023.2

Rear Blade

1 33.9

2 85.4

3 101.1

4 110.1

5 173.7

Original Scale Model
Frcquen_ (cDs )

Optimum Scale Model
Frequen_ (cps)

197. 9 202 9

496. 7 510.8

599.3 604.2

743.6 742 6

948.9 964.2

199. 2 202 8 202 9

501.9 4423 445.2

594.2 544.2 546.6

647. 0 754. 0 737. 0

1020.8 893. 7 894. 0

Objective Function: O.0798 O.0678

V
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5. COMPUTATIONAL EFFICIENCY

5.1 Warm Start Finite Element Analysis

During a STAT optimization, many gradient evaluations are necessary, especially for
optimizations with a large number of variables, such as the SR7 and SR7a. For each gradient
evaluation, one variable is slightly perturbed from its latest design value while all the other variables

remain unchanged. Thus, the blade has changed very little since the last design evaluation was made

by ADS. Therefore, it is reasonable to assume that the blade deflections calculated from the previous
gradient evaluation function call are very similar to those to be calculated by the finite element
analysis of the current gradient evaluation.

Since the approximate finite element analysis of STAT requires the application of geometric
nonlinear analysis to analyze highly swept fan blades, an iterative solution technique is required which

simply calculates displacements necessary to balance all external loads. This is done by continually
updating the stiffness matrix until an equilibrium state has been found. It has been found that a

significant amount of time can be saved by simply initiating the analysis for the current design at the
converged displacement solution of the previous design. This version of the finite element analysis is

termed a 'warm' start as opposed to a 'cold' start analysis, which starts with the linear solution of an
undeformed blade.

Occasionally, the 'warm' start analysis may fail because the gradient step made by ADS
perturbed the design too much, then, a singular matrix will develop. The singular matrix development

will signal the STAT finite element code to start again and run a 'cold' start analysis. Therefore, little
time is wasted and the STAT optimization continues undisturbed. However, it should be noted that

if a cold start is required on a gradient evaluation, the gradient step size is likely too large for that
particular variable and could cause inaccurate gradients to be evaluated and subsequently used by
ADS in performing its optimization.

5.2 ADS Optimization Scheme

The choice of the proper optimization scheme to be used for a particular STAT application

depends on the nature of the problem. The SR7 and 18E design test cases represented tightly
constrained problems, whereas the SRTA aeroelastic model test case represented the unconstrained
tailoring of a blade.

The ADS 'Method of Feasible Directions' (scheme 0 4 8) and 'Modified Method of Feasible

Directions' (scheme 0 5 8) have proven to be the most effective algorithms for solving tightly
constrained problems such as the optimization of the LAP blades, SR7 and 18E. For these particular

cases, the driving power was constrained to within 1 percent of 2592 hp and it was discovered that for
such a tight equality constraint, the 0 5 8 method proved to move more efficiently toward an optimum

design than the 0 4 8 method. This is due to the different manners the methods have when the problem
has encountered a constraint. The 0 4 8 method 'bounces' off the constraint wall, whereas the 0 5 8

method uses the constraint gradient to move along the constraint boundary and thus reaches the
optimum sooner.

The ADS algorithm 'Broydon-Fletcher-Goldfarb-Shanno' (BFGS) variable metric method
for unconstrained minimization was found to be the most suitable method for solving the tailoring
problem of the SR7A aeroelastic scale model. The objective function of the aeroelastic scale model

test case was defined as the square of differences between the model and the SR7 blade design for

static and dynamic characteristics such as mass distribution, static tip deflection, mode shapes and

frequencies. Therefore, by theory the tailored SR7a would take on the identical aeroelastic properties
of the full-scale SR7 design which satisfied all of the necessary constraints.
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5.3 Optimization Computer Time Estimation

The execution time for a particular STAT optimization analysis is dependent upon several

factors of which the most important are the number of design variables, the number of blade material
layers, the blade nonlinear characteristics, and obviously, the number of design step iterations

required to find an optimum design.

The STAT optimizer requires a function call for each variable to determine objective function
and constraint gradients. Using these gradients, ADS starts varying the design and each time the

design must be evaluated, which requires another function call. For the ADS 'Method of Feasible

Directions' (0 4 8 or 0 5 8), about 3 to 5 function evaluations are necessary for each design iteration,
whereas for the 'BFGS' method about an average of 5 function calls can be assumed. Additionally,

design step function calls require a 'cold start' finite element analysis because the change in the blade

design may be large but, the gradient evaluation function calls, which should represent small
perturbations in the blade design, require only a 'warm start' finite element analysis.

The central processing unit (CPU) time necessary for the STAT approximate analysis loop for
the SR7 and the SR7a run on the PWA IBM 3090 is as follows:

warm loop cold loop

SR7 7 layers 12.5 sec. 22.8 sec.
SR7a 23 layers 22.2 see. 30.5 sec.

The differences stem from the pre- and post-processing time required for the additional
composite layers of the aeroelastic scale model. Typically, only 3 to 4 CPU seconds are required by

all of the remaining routines which include the aerodynamic, flutter, noise, once-per-revolution

forced response, and ADS algorithms. Therefore, the benefit of the 'warm' start finite element

capability is quite significant.
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